Improved Outer Loop Vectorization in LLVM

Scalar Find Scalarizeable Instructions Results for Matrix Multiplication
on aarch64 (Graviton3e)

In most loop nests, vectorizing the inner-most loop is the best for (size t i = 0; i < N; i++) { Current limitation: Only works if the def-use chain in the
thing to do. However, there are exceptions where outer-loop float sum = O.; loop body has no cycles.
vectorization is a better choice (e.g. for matrix multiplication). for (size t j = 0; j < M; j++) A Proposed solution: ’8 3

C L. . . float x = B[j] // Access D) e
Currently, outer-loop vectorization is only supported in g . . L. o
) | , * C[j1[il; // Access c) e Keep existing idea: Scalarize if all uses are scalar Q
LLVM through the VPlan-native path. "The VPlan-native sum 4= x: oR . s of scalarived ingt O 4 - _
path is an alternative vectorization code-path that is purely } RECUISIVELY 0 Up Opetall S.O SCalalzCC IS 8 Old OLV mm
pragma/metadata driven and has currently no memory- Ali] = sum; ¢ If only non-scalar use is a loop-header PHI, j New OLV mE
dependency checks or cost-model. The quality of the emitted } assume it can be scalarized! g’ 2 -
code is also sub-optimal: there is no scalarization and every o [f all uses of PHI became scalar, all is fine! Y
memory access is done using gathers/scatters. Inner-Loop Vectorization e Otherwise, rollback. - 1

T
How to improve this code-path? How can uniform or consecu- | Granh b
tive memory accesses be identified in outer-loop vectorization? for (size t i = 0; i < Nj i++) { Exampl e (Use Graph): =y 05
. : . : : : float sum = O0.; inner loop: '
How to avoid un.necessary Vectgrlzatlon of instructions like the // Pseudo-Vectorized immer loop: %i = phi i64 [0, ...1, [%inc, %inner loop] Small Mat. Large Mat.
address calculation of consecutive accesses? for (size t j = 0; j < M; j += 8) { Yptr = getelementptr float, ptr %A, i64 %j | S | | N
float [8] vecl = B[j..j+8]; %a = load float, ptr %ptr Small Matrix: 10° Entries (Everything fits in L1 Cache, Tiling),
float [8] vec2 = fused outside = foo (%a) Large Matrix: 10° Entries
. . . . strided load (&C[jl[i], N); // Slow! [...]
Vectorization in LLVM: sum += reduce add(vecl * vec2); hinc = add i64 %j, 1 C lusi d Fut Work
Classic and Native Paths } %con = icmp eq 164 %inc, %M OHEIUSIONn an ure vvor
A[i] = sum; br J,con, %inner loop, /inner exit
} Conclusion:

processLoop ()

/ ° °
/ Outer-Loop vectorization

e Very large perf. gains possible!
. . e Current upstream functionality of very limited use
Legality Analysis

o T oonA Analve: ' e Can be improved: memory dep. checks, more flexible code, ...
(using LoopAccessAnalysis) // Pseudo-Vectorized outer loop: @ @ @

) for (size t i = 0; i < N; i += 8) { Future Work:
: : - float [8 = O., ... ; : : : -
(Very Basic) Legalﬂfy Analysis foza (S[i]zef:mj ={ 0; i < M }j i4) | e Memory Dependency Analysis with runtime pointer checks?
\ float [8] vecl = dup(B[jl); e VPlan-based Cost Model?
LVP: :plan() goes from IR | float (8l vec2 = CLjlli..i+8]; e Ability to compare costs of VPlans with different "root" loops?

sum += vecl *x vec?2;

to if-conv. VPlan with recipes... y
Ali..i+8] = sum; @ @ Related Work

HCFGBuilder buiids a VPlan ; |
that maps the original IR e Striding Accesses become Consecutive 3.) @\v 3];15 slga(?o:sucsce)i I;tsz ?Z:éaﬁ?}fére e 'RV: A Unified Region Vectorizer for LLVM" by Simon Moll
VPTnstructionsToRe cipes e Element-Wise Add instead of Reduction is a def-use cycle between ., and was a out-of-tree vectorizer capable of outer-loop vectorization.
; inc. When visiting j, assume it ¢ 'Extending LoopVectorize to Support Outer Loop
VPlan-to-VPlan: Find Uniform / Consec. Accesses @ @ can be scalarized. inc is has no Vectorization Using VPlan' by Intel is the foundation for the
Scalarization, (If-Conv.?), ... other non-scalar user, so the improvements suggested here.
LoopAccessAnalysis looks for SCEVAddRecExprs to find con- Q @ assumption was fine!
\ - secutive accesses. When doing outer-loop vectorization, this is
VPlan-to-VPlan opts/cleanups not enough. For example, the SCEV of access ¢) above is: Visit Order: foo — a — ptr
! {{%C,+,4¥<%i_loop>,+,(4 * %L)}<%j loop> @ — j — con — inc — j o Web: SiPear] comm
VPlan::execute() The approach here is to "unpeel" SCEV expressions that do not o lou.knauer@sipearl.com
change the distance between steps of the vectorized loops. This Alternative solution would be to have vectorization-requiring o ctienne.renault@sipearl.com
native path shared path means that SCEVAdd{Expr/RecExpr}s can be unpeeled if the 'sinks" (like in DCE, e.qg. reductions or value operand of

step/rhs operands are loop invariant. store), and to recursively go up operands.

classic vectorizer

https://sipearl.com/

